第五十一章 与时俱进!数学跟互联网接轨 (第2/3页)
附图4为金钱兑换战斗力
附图5为各英雄能力成长差异
假设每个选手都是一个标准人(即个人操作水平和能力以及对比赛节奏的把握能力都为1)
同时不考虑实际装备影响(可通过金钱来对战力进行兑换)。
不考虑塔和大龙的因素。
不考虑地图属性的影响。
未来团战发生率为以下所示:
附图6为团战发生地点和各地点的概率。
那么,请问在接下来的10分钟内,FNC的团战胜率变化数值为?】
伊诚看完了题目,以及下面的5张附图,愣了大约10秒。
卧槽!!!!
这是个什么鬼?
有几个跟他同样进度的少年也发现了这一点。
“可以啊,与时俱进啊!”
“妈个鸡!还让不让人活了,原来我以为打游戏不需要多少数学知识,现在发现我根本不会打游戏。”
“你们不是应该卷子发下来就开始审题的吗?”一个声音吐槽到。
“开始审题时只看到一堆图表,除了那个双三角形有些熟悉之外谁会想到居然是LOL?”
……
“考场内请勿喧哗。”监考老师提醒到。
大家又安静下来。
但是……
伊诚手心一阵冒汗。
这道题的答案是显而易见的,他之前看过那场比赛,最后IG胜利了。
但是怎么求算团战的胜率变化需要稍微思考一下。
他闭上眼睛,细细地把脑海中的数学知识都一一提取出来。
现在的他已经是lv3的数学水平了,这种题目不应该难倒他。
只不过是因为题型比较新颖,在之前的高联竞赛中从未出现过,所以一时有些慌乱。
伊诚的心慢慢沉浸下来,如同一座平静的湖面。
其中一个美妙的身影慢慢浮出水面……
伊诚缓缓睁开眼睛。
他无声地笑了起来。
真是漂亮的小美人儿,那个解答问题的关键——
兰切斯特方程。
这是一个专门用来描述战争变化和胜率的方程。
特别是适用于只有双方对抗的时候。
在1914年,英国人兰切斯特在研究空战最佳编队的时候发现了兰切斯特方程。
之后这个方程被广泛地运用于战争中。
曾经的万字国元首就对这个方程研究得极其深刻,这帮助他们打了不少胜仗。
而在今天,兰切斯特方程被运用于许多对战类的游戏之中,用来模拟和描述双方因为特定元素发生变化导致的损伤率。
其中最著名的就是魔兽争霸3.
以及之后的COC还有率土之滨……
但是……伊诚正准备提笔作答的时候,突然发现了一个问题:
在高联考试范围内,不包含兰切斯特方程,如果他运用了,那么这
(本章未完,请点击下一页继续阅读)